基于随机微分的相位噪声统计特性

贺静波 胡生亮 罗亚松 刘 忠

(海军工程大学电子工程学院,湖北 武汉 430033)

摘要 根据随机微分与噪声信号处理的内在联系,对相位噪声信号进行了系统的分析。建立了相位噪声通过滤波器后所满足的福克尔--普朗克方程,利用群移傅里叶变换(MGFT)给出了方程的解,得到了相位噪声幅度和相位的联合概率密度函数。

关键词 信号处理;随机微分;福克尔-普朗克方程;群移傅里叶变换;相位噪声 中图分类号 TN929.11 **文献标识码** A **doi**: 10.3788/CJL201239.1017002

Statistical Properties of Phase Noise Based on Stochastic Differential

He Jingbo Hu Shengliang Luo Yasong Liu Zhong

(Electronics Engineering College, Naval University of Engineering, Wuhan, Hubei 430033, China)

Abstract According to the intrinsic relations between the stochastic differential and the phase noise signal processing, the phase noise is systematically analyzed. The Fokker-Planck equation of phase noise is presented. The solution is given by using the Motion-Group Fourier transform equation. The joint probability density function of phase noise in the filter is given.

Key words signal processing; stochastic differential; Fokker-Planck equation; motion-group Fourier transform; phase noise

OCIS codes 070.6020; 060.2370; 120.0120

1 引

言

国外对于相位噪声的研究资料较多^[1~10],分别 从不同的应用角度提出了很多工程模型。而国内对 于相位噪声随时间变化的统计特性研究资料较 少^[11~14],只包括分析相位噪声幅度、相位联合概率 密度函数含时解等问题。分析振荡器中相位噪声影 响的文献较多,原因在于与振荡器相位噪声相对应 的是振幅噪声,但由于大多数电子设备对信号的相 位非常敏感,而振幅噪声,由于振荡器的自限幅效应 而大为减小,使得相位噪声相对于振幅噪声要大得 多。带有相位噪声的信号无论是作为发射激励信 号,还是接收机的本振信号,在解调过程中都会和信 号一样出现在接收端,从而引起信噪比下降,误码率 增加,因此对振荡器的相位噪声进行研究具有重要 意义。本文利用随机微分方法对相位噪声的统计特 性进行了详细研究。

2 群移傅里叶变换简介

欧几里得运动群^[15] $S_{\rm E}(N)$ 是具有特殊正交群 $S_{\rm O}(N)$ 的 \mathbb{R}^{N} ,定义为 $g = (a,A) \in S_{\rm E}(N)$,式中 $A \in S_{\rm O}(N)$, $a \in \mathbb{R}^{N}$ 。对于任意g = (a,A)和h = (r, $\mathbb{R})$ 群规则定义为 $g \circ h = (a + Ar, AR)$ 和 $g^{-1} =$

导师简介:刘 忠(1963-),男,教授,博士生导师,主要从事武器系统工程方面的研究。E-mail: hjb_1979@163.com

收稿日期: 2012-04-25; 收到修改稿日期: 2012-07-03

基金项目:中国博士后科学基金(201104767、20100471795)、湖北省自然科学基金(2009CDB337)和海军工程大学自然科 学基金(HGDYDJJ11006)资助课题。

作者简介: 贺静波(1979—),男,博士后,主要从事雷达干扰信号处理、随机微分理论及应用等方面的研究。 E-mail: jbh_1979@sina.com

 $(-A^{T}a, A^{T})$,式中。表示群论运算符,为了方便表达 通常记为 $g = \begin{pmatrix} A & a \\ 0^{T} & 1 \end{pmatrix}$ 。比如 $S_{E}(2)$ 中的每一个元素 在极坐标下可以记为

$$\boldsymbol{g}(\boldsymbol{r},\boldsymbol{\theta},\boldsymbol{\phi}) = \begin{pmatrix} \cos \phi & -\sin \phi & r \cos \theta \\ \sin \phi & \cos \phi & r \sin \theta \\ 0 & 0 & 1 \end{pmatrix}, \quad (1)$$

式中 0 《 ϕ , θ 《 2π 和 0 《 r 《 ∞ ,d[$g(r,\theta,\phi)$] = $\frac{r}{4\pi^2} dr d\theta d\phi$ 。

运动函数^[16] f(g)定义为

$$\widetilde{X}_{i}^{R}f = \frac{\mathrm{d}}{\mathrm{d}t}f[\mathbf{g}\circ\exp(t\widetilde{\mathbf{X}}_{i})]|_{t=0},$$

$$\widetilde{X}_{i}^{L}f = \frac{\mathrm{d}}{\mathrm{d}t}f[\exp(-t\widetilde{\mathbf{X}}_{i})\circ\mathbf{g}]|_{t=0}.$$
 (2)

对于 $S_{E}(2)$ 有

$$\tilde{\mathbf{X}}_{1} = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \tilde{\mathbf{X}}_{2} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$
$$\tilde{\mathbf{X}}_{3} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}.$$
(3)

一般在极坐标情况下微分算子 X̃^R 可表示为

$$\begin{split} \widetilde{X}_{1}^{R} &= \frac{\partial}{\partial \phi}, \\ \widetilde{X}_{2}^{R} &= \cos(\phi - \theta) \frac{\partial}{\partial r} + \frac{\sin(\phi - \theta)}{r} \frac{\partial}{\partial \theta}, \\ \widetilde{X}_{3}^{R} &= -\sin(\phi - \theta) \frac{\partial}{\partial r} + \frac{\cos(\phi - \theta)}{r} \frac{\partial}{\partial \theta}, \\ \widetilde{X}_{1}^{L} &= -\frac{\partial}{\partial \phi} - \frac{\partial}{\partial \theta}, \\ \widetilde{X}_{2}^{L} &= -\cos\theta \frac{\partial}{\partial r} + \frac{\sin\theta}{r} \frac{\partial}{\partial \theta}, \\ \widetilde{X}_{3}^{L} &= -\sin\theta \frac{\partial}{\partial r} - \frac{\cos\theta}{r} \frac{\partial}{\partial \theta}. \end{split}$$
(4)

在笛卡尔坐标系下,则表示为

$$\begin{split} \widetilde{X}_{1}^{R} &= \frac{\partial}{\partial \phi}, \\ \widetilde{X}_{2}^{R} &= \cos \phi \frac{\partial}{\partial x} + \sin \phi \frac{\partial}{\partial y}, \\ \widetilde{X}_{3}^{R} &= -\sin \phi \frac{\partial}{\partial x} + \cos \phi \frac{\partial}{\partial y}, \\ \widetilde{X}_{1}^{L} &= -\frac{\partial}{\partial \phi} + y \frac{\partial}{\partial x} - x \frac{\partial}{\partial y}, \\ \widetilde{X}_{2}^{L} &= -\frac{\partial}{\partial x}, \\ \widetilde{X}_{3}^{L} &= -\frac{\partial}{\partial y}. \end{split}$$
(5)

运动函数 $f(\mathbf{g})$ 的傅里叶变换定义为 $F(f) = \hat{f}(p) = \int_{G} f(\mathbf{g}) U(\mathbf{g}^{-1}, p) d\mathbf{g}$,相应的逆傅里叶变换 (IFT) $f(\mathbf{g}) = \mathcal{F}^{-1}(f) = \int_{G} f_{trace} [\hat{f}(p) U(\mathbf{g}, p)] dv(p)$, f_{trace} 表示求特征值。对于 $\mathbf{S}_{E}(2)$ 有 $u_{nm} [\mathbf{g}(r, \theta, \phi), p] =$

 $j^{n-m} \exp\{-j[n\phi + (m-n)\theta]\}J_{n-m}(pr),$ (6) 式中 J_k(x) 是 k 阶贝塞尔函数,则 IFT 可以记为

$$f(\boldsymbol{g}) = \sum_{m,n \in \mathbb{Z}_0} \int_0^\infty \hat{f}_{nn} u_{nm}(\boldsymbol{g}, p) p \mathrm{d}p.$$
(7)

根据群移傅里叶变换(MGFT)和微分算子 $\widetilde{X}_{i}^{R},\widetilde{X}_{i}^{L}$ 可知,

$$F[\tilde{X}_{i}^{R}f] = \eta(\boldsymbol{X}_{i}, p)\hat{f}(p),$$

$$F[\tilde{X}_{i}^{L}f] = -\hat{f}(p)\eta(\boldsymbol{X}_{i}, p),$$
(8)

式中
$$\eta(\mathbf{X}_i, p) = \frac{\mathrm{d}}{\mathrm{d}t} \{ U[\exp(t\mathbf{X}_i), p] \} \mid_{t=0}$$
。对于
 $\mathbf{S}_E(2), u_{mm}[\exp(t\widetilde{\mathbf{X}}_1), p] = \exp(-\mathrm{j}nt)\delta_{m,n},$ 因此

$$\eta_{nm}(\tilde{X}_1,p) = -jn\delta_{m,n}, \qquad (9)$$

$$u_{nm}\left[\exp(t\widetilde{\boldsymbol{X}}_{2}),p\right] = \mathbf{j}^{n-m}\mathbf{J}_{n-m}(pt) \quad \underline{\mathrm{H}} \quad \frac{\mathrm{d}}{\mathrm{d}x}\mathbf{J}_{m}(x) =$$

$$\frac{1}{2} [J_{m-1}(x) - J_{m+1}(x)], M$$

$$\eta_{mn}(\tilde{X}_{2}, p) = \frac{jp}{2} (\delta_{m, n+1} + \delta_{m, n-1}), \qquad (10)$$

$$u_{nm}\left[\exp(t\tilde{\boldsymbol{X}}_{3}),p\right] = (-1)^{n-m} J_{n-m}(pt), 因此$$
$$\eta_{nm}(\tilde{\boldsymbol{X}}_{3},p) = \frac{p}{2}(\delta_{m,n+1} - \delta_{m,n-1}).$$
(11)

3 相位噪声对滤波器的影响
设相位噪声
$$s(t) = U_j \exp\{j[2\pi f_j t + 2\pi K_{FM} \int_{0}^{t} u(s) ds]\} = U_j \exp[j\phi(t)], 滤波器的冲激响应函数为 $h(t)$, 则输出信号为
 $z(t) = h(t) * s(t) = \int_{0}^{t} h(\tau)U_j \exp\{j[\phi(t) - \phi(\tau)]\} d\tau$, (12)
令 $\phi_{\Delta t} = \phi(t + \Delta t) - \phi(t)$, 则
 $z(t + \Delta t) = \int_{0}^{t+\Delta t} h(\tau)U_j \exp\{j[\phi(t + \Delta t) - \phi(\tau)]\} \times \exp(j\phi_{\Delta t}) d\tau + \int_{0}^{t+\Delta t} h(\tau)U_j \exp\{j[\phi(t + \Delta t) - \phi(\tau)]\} \times \exp(j\phi_{\Delta t}) d\tau + \int_{0}^{t+\Delta t} h(\tau)U_j \exp\{j[\phi(t + \Delta t) - \phi(\tau)]\}$$$

1017002-2

因此

$$\dot{z}(t) = U_{j}h(t) + z(t) \lim_{\Delta t \to 0} \frac{\exp(j\phi_{\Delta t}) - 1}{\Delta t}.$$
 (16)

则

$$dz(t) = U_{j}h(t)dt + jz(t)[2\pi f_{j}dt + 2\pi K_{FM}\sigma_{n}dW(t)] = [U_{j}h(t) + j2\pi f_{j}z(t)]dt + j2\pi K_{FM}\sigma_{n}z(t)dW(t).(17)$$

式中 dW(t) 为单位能量的白噪声。令 z(t) = r(t)exp[j\theta(t)],将(17)式转化成极坐标形式为
dr(t)exp[j\theta(t)] = [U_{k}(t)] + i2 f_{k}(t) = [i2t(t)] + i2

$$\{U_{jh}(t) + j2\pi f_{j}r(t)\exp[j\theta(t)]\}dt + j2\pi K_{\text{FM}}\sigma_{n}r(t)\exp[j\theta(t)]dW(t).$$
(18)

(18)式左端:

$$\exp[j\theta(t)]dr(t) + jr(t)\exp[j\theta(t)]d\theta(t) = \left[\cos \theta(t)dr(t) - r(t)\sin \theta(t)d\theta(t)\right] + j[\sin \theta(t)dr(t) + r(t)\cos \theta(t)d\theta(t)]. (19)$$

右端:

$$\{U_{jh}(t) + j2\pi f_{jr}(t) \exp[j\theta(t)]\}dt + j2\pi K_{\text{FM}}\sigma_{n}r(t) \exp[j\theta(t)]dW(t) = [U_{jh}(t)dt - 2\pi f_{jr}(t)\sin\theta(t)dt -$$

$$2\pi K_{\rm FM}\sigma_n r(t)\sin\theta(t)dW(t)] + j[2\pi f_j r(t)\cos\theta(t)dt + 2\pi K_{\rm FM}\sigma_n r(t)\cos\theta(t)dW(t)].$$
(20)

联立(18)~(20)式解得

$$\begin{bmatrix} dr(t) \\ d\theta(t) \end{bmatrix} = \begin{bmatrix} U_{jh}(t)\cos\theta(t) \\ 2\pi f_{j} - \frac{U_{jh}(t)\sin\theta(t)}{r(t)} \end{bmatrix} dt + \begin{bmatrix} 0 \\ 2\pi K_{\text{FM}}\sigma_{n} \end{bmatrix} dW(t).$$
(21)
$$\Leftrightarrow a = \begin{bmatrix} U_{jh}(t)\cos\theta(t) \\ 2\pi f_{j} - \frac{U_{jh}(t)\sin\theta(t)}{r(t)} \end{bmatrix} \not\boxtimes H =$$

 $\begin{bmatrix} 0\\ 2\pi K_{FM}\sigma_n \end{bmatrix}$, r(t)、 $\theta(t)$ 两者的联合概率密度函数 $p(r,\theta;t)$ 所满足的福克尔-普朗克方程为

$$\frac{\partial p}{\partial t} = -\sum_{i=1}^{2} \frac{\partial}{\partial x_{i}} [a_{i}p(x,t)] + \frac{1}{2} \sum_{i,j=1}^{2} \frac{\partial^{2}}{\partial x_{i}\partial x_{j}} \times [(\mathbf{H}\mathbf{H}^{\mathrm{T}})_{ij}p(x,t)] = -U_{j}h(t)\cos\theta(t)\frac{\partial p}{\partial r} - [2\pi f_{j} - \frac{U_{j}h(t)\sin\theta(t)}{r(t)}]\frac{\partial p}{\partial \theta} + \frac{(2\pi K_{\mathrm{FM}}\sigma_{n})^{2}}{2}\frac{\partial^{2} p}{\partial \theta^{2}}.$$
(22)

利用 MGFT 中的微分算子,可以将(22)式写成

$$\frac{\partial p}{\partial t} = \left[U_j h(t) \widetilde{X}_2^L + 2\pi f_j (\widetilde{X}_1^R + \widetilde{X}_1^L) + \frac{(2\pi K_{\text{FM}} \sigma_n)^2}{2} (\widetilde{X}_1^R + \widetilde{X}_1^L)^2 \right] p.$$
(23)

对(23)式进行 MGFT 可以得到

$$\frac{\mathrm{d}\hat{p}}{\mathrm{d}t} = -U_{j}h(t)\hat{p}\eta(\tilde{\mathbf{X}}_{2},p) + 2\pi f_{j}\eta(\tilde{\mathbf{X}}_{1},p)\hat{p} - 2\pi f_{j}\hat{p}\eta(\tilde{\mathbf{X}}_{1},p) + \frac{(2\pi K_{\mathrm{FM}}\sigma_{n})^{2}}{2}[\eta(\tilde{\mathbf{X}}_{1},p)]^{2}\hat{p} + \frac{(2\pi K_{\mathrm{FM}}\sigma_{n})^{2}}{2}\hat{p}[\eta(\tilde{\mathbf{X}}_{1},p)]^{2} - 2\pi f_{j}\hat{p}\eta(\tilde{\mathbf{X}}_{1},p)]^{2} - 2\pi f_{j}\hat{p}\eta(\tilde{\mathbf{X}}_{1},p)$$

 $(2\pi K_{FM}\sigma_n)^2 \eta(\hat{X}_1, p)\hat{p}\eta(\hat{X}_1, p).$ (24) 只要解出(24)式然后利用(7)式就可以得到 z(t)的 概率密度函数 $p(r, \theta, \phi; t),$ 如果该方程为线性常系 数齐次微分方程组就利用矩阵指数法求解,若为线 性时变齐次微分方程组就利用龙格-库塔法进行数 值求解。要得到联合概率密度函数 $p(r, \theta; t),$ 只需对 ϕ 进行积分即

$$p(r,\theta;t) = \frac{1}{2\pi} \int_{0}^{2\pi} p(r,\theta,\phi;t) d\phi =$$
$$\sum_{n \in \mathbb{Z}} j^{-n} \exp(-jn\theta) \int_{0}^{\infty} \hat{p}_{0,n}(p) J_{-n}(pr) p dp.$$
(25)

4 实验与结果分析

令滤波器的冲激响应函数为

$$h(t) = \begin{cases} 1, & 0 \leqslant t \leqslant 1\\ 0, & \text{else} \end{cases}$$
(26)

令 $D = (2\pi K_{FM}\sigma_n)^2$,当 D = 1 时根据(25)、(26)式 得到相位噪声通过该滤波器后联合概率密度函数如 图 1 所示。

图 1 D=1 时联合概率密度函数曲线

Fig. 1 Curves of joint probability density function at D=1

当 D=2 时相位噪声通过该滤波器后的联合概 率密度函数如图 2 所示。

图 2 D=2时联合概率密度函数曲线

Fig. 2 Curves of joint probability density function at D=2

当 D=4 时相位噪声通过该滤波器后的联合概 率密度函数如图 3 所示。

图 3 D=4 时联合概率密度函数曲线

通过上述多组实验可以看出相位噪声通过滤波 器后联合概率密度函数随噪声能量 D 的变化规律。

5 结 论

建立了相位噪声通过滤波器后其幅度和相位的 联合概率密度函数所满足的福克尔-普朗克方程,并 利用 MGFT 的方法将此偏微分方程化成了齐次线 性微分方程组,最后得到了相位噪声通过雷达中频 滤波器后幅度和相位的联合概率密度函数。下一步 还需要深入研究相位噪声通过滤波器时变冲激函数 后的统计特性。

参考文献

- D. J. Bond. The statistical properties of phase noise[J]. Br. Telecommun. Technol. J., 1989, 7(4): 12~17
- 2 G. J. Foschini, L. J. Greenstein, G. Vannucci. Noncoherent detection of coherent lightwave signals corrupted by phase noise [J]. IEEE Trans. Commun., 1988, 36(3): 306~314
- 3 G. J. Foschini, G. Vannucci. Characterizing filtered light waves corrupted by phase noise[J]. *IEEE Trans. Inform. Theory*, 1988, 34(6): 1437~1448
- 4 G. J. Foschini, G. Vannucci, L. J. Greenstein. Envelope statistics for filtered optical signals corrupted by phase noise[J]. *IEEE Trans. Commun.*, 1989, **37**(12): 1293~1302
- 5 I. Garrett, G. Jacobsen. Possibilities for coherent optical communication systems using lasers with large phase noise[J]. Br. Telecommun. Technol. J., 1989, 7(4); 5~11
- 6 I. Garrett, D. J. Bond, J. B. Waite *et al.*. Impact of phase noise in weakly coherent systems: A new and accurate approach [J]. J. Lightwave Technol., 1990, 8(3): 329~337
- 7 D. J. Higham. An algorithmic introduction to numerical simulation of stochastic differential equations [J]. SIAM Rev., 2001, 43(3): 525~546
- 8 M. Stefanovic, D. Milic. An approximation of filtered signal envelope with phase noise in coherent optical systems [J]. J. Lightwave Technol., 2001, 19(11): 1685~1690
- 9 J. B. Waite, D. S. L. Lettis. Calculation of the properties of phase noise in coherent optical receivers [J]. Br. Telecommun. Technol. J., 1989, 7(4): 18~26
- 10 X. Zhang. Analytically solving the Fokker-Planck equation for the statistical characterization of the phase noise in envelope detection[J]. J. Lightwave Technol., 1995, 13(8): 1787~1794
- 11 Qin Xi, Chen Yong, Cao Jihong *et al.*. Influence of dispersion compensation schemes on phase noise of phase modulation systems[J]. *Chinese J. Lasers*, 2007, **34**(1): 64~68 秦 曦,陈 勇,曹继红等. 色散补偿方式对相位调制系统中相 位噪声的影响[J]. 中国激光, 2007, **34**(1): 64~68
- 12 Qi Jie, Dong Xiaopeng, Zheng Junda *et al.*. An algorithm of filtering background noise of optical fiber gas sensor[J]. *Chinese J. Lasers*, 2011, **38**(11): 1105008
 齐 洁, 董小鹏, 郑俊达 等. 光纤气体传感系统背景噪声的滤除

介 后, 里小鹏, 冲夜运 守. 元红气体传恐系犹肖京噪声的遮砾 [J]. 中国激光, 2011, **38**(11): 1105008

13 Zhou Qin, Zhang Xiuda, Hu Jian et al.. Noise analysis of staring three-dimensinal active imaging laser radar [J]. Chinese J. Lasers, 2011, 38(9): 0908005

周 琴,张秀达,胡 剑等.凝视成像三维激光雷达噪声分析 [J].中国激光,2011,38(9):0908005

14 Song Ningfang, Yang Dezhao, Sun Mingjie et al.. Impact of

speckle noise to the property of coherent lidar system[J]. Chinese
J. Lasers, 2011, 38(10): 1005001

- 宋凝芳,杨德钊,孙鸣捷等.散斑噪声对相干激光雷达系统性能的影响[J].中国激光,2011,**38**(10):1005001
- 15 G. S. Chirikjian, A. B. Kyatkin. Engineering Applications of

Noncommutative Harmonic Analysis [M]. Boca Raton: CRC Press, 1997. 21~54

16 W. Miller. Lie Theory and Special Functions[M]. New York: Academic, 1968. 101~134

栏目编辑:何卓铭